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Abstract: A multi-armed bandit serves as a simple but powerful framework for reinforcement 
learning algorithms that can make decisions over time under uncertainty. The multi-armed bandit 
problem involves an interesting topic: the goal is to maximize the payoff through a balance of 
exploration and exploitation, for which a great deal of work has accumulated over the years. This 
paper introduces and models the multi-armed bandit problem, and mainly demonstrates three most 
common multi-armed bandit algorithms, 𝜀𝜀 -greedy, upper confidence bound, and Thompson 
sampling (TS). Among them, TS is characterized by solving a wide range of problems in a 
computationally efficient way and is currently widely used. This paper will introduce three practical 
applications in different fields. Finally, this paper summarizes the main applicable types of practical 
problems and the shortcomings of each algorithm and provides some promising directions for future 
research in related fields. It is concluded that the advantages of TS allow quick and efficient converge 
to optima in decision-making problems with no prior information, while the disadvantages of it 
remain open to improve in several aspects. 

1. Introduction 
Reinforcement learning is a technique of machine learning that is currently considered to be a way 

to iterate optimal configuration parameters through data fitting so that artificial intelligence can 
achieve a high recognition rate in a shorter period. Reward maximization [1] and trial-and-error 
experience [2] are sufficient to develop competent behaviors that exhibit intelligence. Therefore, 
reinforcement learning, as a branch of artificial intelligence based on reward maximization, can 
promote the development of general artificial intelligence [3]. Reinforcement learning is a mapping 
learning of the intelligent system from the environment (everything that interacts with the agent) [4] 
to the behavior (the choices of actions). By using reinforcement learning, a reinforcing signal is 
returned as feedback, and action plans are improved to suit the environment. A deep disparity between 
reinforcement learning and deep learning is the amount of information given for training and the 
behavioural purpose (evaluation and instruction) for using that information [5]. Taking Google's 
AlphaGo and AlphaZero as two examples, the former generates a model after training about 30 
million sets of human chess data through a deep convolutional neural network in deep learning. The 
latter uses the reinforcement learning method, which is simply to generate a model by playing chess 
with yourself. The result of this experiment was AlphaGo defeated the top human players in Go, and 
Alpha Zero defeated AlphaGo [6]. 

The purpose of reinforcement learning is to maximize cumulative total of rewards received after 
each action. And the aim with limited time is to try to choose actions that can maximize the 
cumulative reward without knowing the environment, that is, the reward probability of each action. 
On the one hand, it is necessary to ensure the existing reward efficiency, and on the other hand, some 
exploration is required to see if there is an unknown action with a higher reward. Therefore, a standard 
reinforcement learning algorithm must include a balance between exploration and exploitation, which 
means the exploration-exploitation dilemma [7]. Exploration refers to doing things that have never 
been done before to obtain a higher reward, which helps the agent fully understand its state space. 
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Exploitation means doing what the agent currently knows will yield the greatest reward, which helps 
it find the optimal sequence of actions. A goal of reinforcement learning is to maximize the 
cumulative return, and a variety of algorithms have been applied over the years to this decision 
process. 

A final reward of a reinforcement learning task is observed after an action with several steps. The 
simplest case is to maximize a one-step reward. A theoretical model corresponding to the single-step 
reinforcement learning task is named "K-armed bandit" [8] this paper will focus on the multi-armed 
bandit problem. The multi-armed bandit problem can be traced back to the following scenario in 
gambling: a gambler in a casino facing a row of identical-looking gambling machines wants to 
maximize returns without knowing reward probabilities [9]. How to make choices in sequence? MAB 
problem is also included in many different real-world problems, such as advertisement placement. 
Figuring out which category of advertisements users like and maximizing the CTR click rate [10]. 
This is the bandit problem. A class of algorithms for solving such repeated decision problems under 
a model with return uncertainty is called the bandit algorithm. For decision-makers, the only result of 
a single observation is the reward they get, and it is impossible to observe what kind of reward they 
will get if they take a different decision. According to different assumptions about the rewarding 
process, the bandit problem can be mainly divided into three types: Stochastic, Adversarial, and 
Markovian [9]. The reward of the arm of the Stochastic bandit obeys a certain fixed probability 
distribution. By contrast, the distribution of the reward of arms of an adversarial bandit will change, 
but it never equals zero.  For Markov-style bandit, the rewards of the arms are defined by Markov 
chains [11]. 

The basic algorithms commonly used for MAB problems are 𝜺𝜺-greedy, pursuit, reinforcement 
comparison, Upper confidence bound (UCB), and Thompson sampling (TS). The greedy algorithm 
chooses the highest confidence at each chosen moment regardless of the action-estimated reward. 𝜺𝜺-
Greedy is to set an ε to guide how greedy the action will be. For example, set 𝜺𝜺 to 0.1 to ensure that 
10% of the time is devoted to exploration, and 90% of the time is used for exploitation. The specific 
operation is to generate a random number from 0 to 1 each time you play. If the number is greater 
than 𝜺𝜺, take the action with the highest estimated probability of winning. If it is less than 𝜺𝜺, randomly 
chose another action (including the action with the highest probability of winning), and after obtaining 
the profit, update the estimated winning probability of this action for reference in the next election. 
In the short term, the greedy algorithm is more dominant, but in the long run, proper exploration is 
more beneficial to the total gain accumulation. The advantage of this method is that it is simple to 
implement and not too bad, even if the distribution is non-stationary. The disadvantage is also obvious 
that it usually converges slowly; The ratio of performing the optimal action (greedy) after 𝜺𝜺 
converges is 𝟏𝟏 − 𝜺𝜺 < 𝟏𝟏. For this, it may be possible to let 𝜺𝜺 decrease over time [12]. 

Upper confidence bound algorithm is action selection based on the upper confidence bound. The 
maximum action value computed in this algorithm is an upper bound on the possible true value of the 
action. If an action is selected, its uncertainty becomes smaller, while if it is not selected, the 
uncertainty of the action becomes larger. As the total number of choices increases, all actions will be 
chosen, but actions with lower value estimates or actions that have been chosen more times are chosen 
less frequently. Actions that are selected less frequently are more likely to be selected first because 
of the larger upper limit. The core idea of upper confidence bound selection is that the square root is 
a measure of the accuracy or variance of the action value estimate. In this algorithm, all actions are 
selected, but actions with low estimates or trivial actions are selected less frequently [13]. 

TS was first proposed by William R. Thompson in 1933[14]. Thompson-sampling samples from 
the beta distribution of each action and chooses the action with the highest return value. Such a 
selection method also allows actions that are not frequently attempted to have a wider range of 
possible values because they will have a wider distribution due to the properties of the beta 
distribution. An obvious feature of UCB, a deterministic algorithm, and TS, which is a random 
algorithm, is that UCB needs to update the upper bound in real-time, while TS allows delayed updates. 
In practical applications, TS will have a better practical application effect [15]. The TS algorithm is 
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an implementation of Probability matching because it is sampled from the prior distribution, and the 
reward probability corresponding to each action is based on the facts that have been observed and the 
current iteration result. 

Multi-armed bandit is a very typical decision-making method, which is widely used in 
recommender systems. Advertisers need to discover and optimize the creative form of advertising 
early, which involves the rational allocation of investment and better advertising effect, and ultimately 
improves the return on investment [16]. While widely used standard A/B tests require a week-long 
data collection cycle to make a final decision, a multi-arm algorithm can accomplish the same task in 
less time. Another area of widespread use is in medicine, exemplified by the treatment of multiple 
myeloma. In 2019, Wang, Yingfei, et al. [17] proposed the use of multi-armed bandit machines to 
determine the order of treatment with background information about patients and treatments, to 
maximize overall survival outcomes and used TS to alleviate the possible absence of numerable 
observations needed in heterogeneity. 

In this paper, the contributions are threefold. Firstly, the multi-armed bandit problem is modelled 
and the classical solutions to it are introduced, including 𝜀𝜀-greedy algorithm and UCB algorithm. 
Secondly, TS algorithm is derived and discussed, which consists in playing an action according to 
the probability that maximizes the expected reward. Thirdly, cases are shown to demonstrate the 
applications of TS algorithm in various fields in recent years and the related improvements which 
expand the scope of application and improve the efficiency of decision learning. 

2. Problem formulation 
2.1 The multi-armed bandit problem 

This paper will start with the stochastic multi-armed bandit problem [18], which assumes that a 
bandit machine has 𝐾𝐾 arms. Under a limited number of rounds 𝑡𝑡 = 1,2,3,⋯, one arm must be 
selected each time and a total goal is to maximize a cumulative reward value. Each arm, when 
selected, generates a reward value following some unknown but fixed distribution. Specifically, each 
time an arm is selected, it will sample from its corresponding distribution to get the feedback 
(bounded [0,1]) reward and return it. In addition, setting of the reward follows bandit feedback, that 
is, only the reward of the selected action can be observed. The combination of all arms of a multi-
armed bandit machine can be regarded as a set of real distributions 𝐵𝐵 = {𝑅𝑅1, … ,𝑅𝑅𝑘𝑘}, and the reward 
of the 𝑘𝑘th arm obeys the distribution 𝑅𝑅𝑘𝑘. Often in the actual process, more consideration is given to 
the reward mean vector. Definition {𝜇𝜇1, … , 𝜇𝜇𝑘𝑘} is the mean reward associated with these reward 
distributions, where 𝜇𝜇𝑘𝑘 = 𝐸𝐸[𝑅𝑅𝑘𝑘]. Since the distributions are unknown, the expectations are also 
unknown. The optimal mean reward is defined as 𝜇𝜇∗ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑘𝑘}. The difference between the mean 
reward of any arm and the mean reward of the best one is expressed as 𝛥𝛥𝑘𝑘 = 𝜇𝜇∗ − 𝜇𝜇𝑘𝑘. Regret is a 
globally defined metric that can be used to measure how well an algorithm performs. It is defined as 
the expected difference between the sum of rewards when the optimal strategy is adopted and that 
having collected: known as regret at round 𝑇𝑇. Since choices of arms are randomly generated by an 
algorithm, 𝑅𝑅(𝑇𝑇) is also a random variable, therefore expected regret is usually considered as an 
evaluation criterion. Define 𝑁𝑁𝑘𝑘(𝑇𝑇) as the number of times the arm 𝑖𝑖 has been pulled by step 𝑡𝑡 − 1. 
Then the expected total regret in round 𝑇𝑇 is defined by 

 
𝐸𝐸�𝑅𝑅(𝑇𝑇)� = 𝐸𝐸�𝑇𝑇𝜇𝜇∗ − 𝐸𝐸(∑ 𝜇𝜇𝑘𝑘𝑇𝑇

𝑡𝑡=1 )�,                             (1) 
 

2.2 ε-Greedy Algorithm 

𝜀𝜀-greedy uses random exploration, uses currently known information to make decisions, and trades 
off exploration and utilization based on a probability 𝜀𝜀. Known information refers to the expectation 
of reward brought by choosing action 𝑎𝑎 at time 𝑡𝑡: the expected benefit that action 𝑎𝑎 has produced 
so far. For example, if the 10𝑡𝑡ℎ choice is now made, the previous action 1 has been chosen a total of 
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3 times, and the average of the three returns is calculated. Each time the agent tries to choose one 
among 𝑁𝑁 items to recommend to the user, explore with the probability of 𝜀𝜀, that is, randomly select 
a rocker with a uniform probability; use it with the probability of 1 − 𝜀𝜀, that is, select the rocker with 
the highest current average reward arm, where 𝜀𝜀 ∈ [0,1] The larger 𝜀𝜀 is, the greater the degree of 
exploration. For example, the current action is randomly selected from 𝐾𝐾 machines with a probability 
of 0.3, and the machine with the highest expected return is selected with a probability of 0.7. 𝜀𝜀 is 
usually taken as 0.1, it can vary widely according to the situation and preference. 

One of the shortcomings of the 𝜀𝜀-Greedy algorithm is that, throughout the random exploration 
process, historical information is not considered, and the algorithm may mistakenly continue to 
explore actions that are known to have large regret values. To reduce the likelihood of such inefficient 
exploration, one way is to gradually reduce the value of 𝜀𝜀 over time; another way is to select machine 
explorations that are less certain but have potential. 

2.3 UCB Algorithm 
What Upper Confidence Bound captures is the change in mean confidence. The reason why it is 

Upper is that we are analysing reward, which is taking the upper bound of the confidence interval as 
an estimate under a certain degree of confidence. The Hoeffding inequality [19] 

 
𝑃𝑃{|𝑥̅𝑥 − 𝐸𝐸(𝑥̅𝑥)| ≤ 𝛿𝛿} ≥ 1 − 2𝑒𝑒−2𝑛𝑛𝛿𝛿2                            (2) 

 
Is used to evaluate the upper bound. According to the law of large numbers, with the accumulation 

of samples, 𝑛𝑛 continues to increase, and the bound will gradually tighten. Therefore, 𝑝𝑝 is defined by 
a function 𝑝𝑝 = 1 − 2𝑒𝑒−2𝑛𝑛𝛿𝛿2 whose form is a Gaussian distribution. If given determining 𝑝𝑝, δ can be 
calculated, which is the distance from the supremum to the mean. By taking the inverse of 𝑝𝑝, the 
upper confidence bound can be deduced as 

 

𝑈𝑈𝑘𝑘 = 𝜇𝜇𝑘𝑘 + �2𝑙𝑙𝑙𝑙𝑇𝑇
𝑛𝑛

,                                     (3) 

 
where 𝜇𝜇𝑖𝑖 represents the estimated expected value of arm 𝑘𝑘, 𝑇𝑇 represents the number of times the 

test has been tried so far, 𝑛𝑛 represents the number of times the arm 𝑘𝑘 has been shaken down. 
The right side of formula (2) is divided into two parts, the left part represents the current estimated 

value of arm 𝑘𝑘, and the right side can be understood as the standard deviation of arm 𝑘𝑘. The part on 
the right can be seen as a compromise between exploration and exploitation. Because when the 
number of explorations of arm 𝑘𝑘 is very small, 𝑛𝑛 is very small, then the right equation is large, the 
value of the entire equation is large, and the probability of arm 𝑘𝑘 being selected is very high, which 
belongs to the exploration part of arm 𝑘𝑘. When each arm has been explored enough, the value of 𝑛𝑛 
is larger, and the influence of the formula on the right is reduced. Then the value of the entire formula 
is mainly determined by the estimated value on the left. That is to say, the larger the estimated value 
is, the higher the probability of arm 𝑘𝑘 being selected, this belongs to the utilization part of arm 𝑘𝑘. 
When the number of attempts is sufficient, the estimated value has a greater impact. And the 
confidence is closer to 1 and the answer is closer to the real expectations of the arm. 

One of the shortcomings of the UCB algorithm is that it cannot use context which widely exists in 
real application scenarios, such as the user ID of the recommender system. Without making full use 
of the contextual information of the recommended scene, all selection strategies are the same, 
ignoring the diverse factors and characteristics of specific occasions, such as the user's own interests, 
preferences, purchasing power and other factors as a living personality. Therefore, the same product 
is accepted differently by different users and in different situations. If the context information can be 
used in the system decision-making process, the learning and improvement efficiency of decision-
making can be improved and the algorithm can converge to the optimal choice faster. To take 
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advantage of context, consider learning them using linear regression [20], or estimating the supremum 
using ridge regression [21]. 

3. Thompson Sampling 
Then, after understanding the relatively early classical algorithms, the problem arises. In recent 

years, experienced the continuous theoretical research and practical application development, is there 
an algorithm more natural and natural randomized than the 𝜀𝜀-greedy algorithm whose disadvantage 
lies in the lack of active exploration, and the UCB algorithm, whose core is to use the mean and 
standard deviation to form an estimate of the item to achieve the effect of E-E leading to the 
shortcoming of the failure of achieving a truly random effect?  Yes, the answer is the Thompson 
sampling (TS) algorithm. TS algorithm's estimate of the average reward is no longer a sample average 
but is directly sampled from the current posterior distribution. In this case, the TS algorithm will 
naturally complete the two tasks of exploration and exploration at the same time. If an arm has not 
been selected, then the samples sampled from this arm will fall on the entire interval with an 
approximately uniform probability (equivalent to uniform exploration). And if an arm is selected 
more times, then the natural estimation is more accurate. If the arm is relatively "good", the 
probability of sampling from its posterior distribution is relatively high. It is easier to be selected 
(exploitation).  

TS, like UCB, optimizes results by estimating the conversion rate, while TS uses prior knowledge 
to a greater extent. Bernoulli distribution just has Beta distribution as conjugate prior, with conjugate 
prior, it is easy to do Bayesian update. Beta distribution [22] is a distribution of random variables on 
(0, 1). It has two parameters 𝛼𝛼, 𝛽𝛽 greater than 0. The probability density function is 

 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝛽𝛽) = 𝑥𝑥𝛼𝛼−1(1−𝑥𝑥)𝛽𝛽−1

� 𝑢𝑢𝛼𝛼−1(1−𝑢𝑢)𝛽𝛽−1 𝑑𝑑𝑢𝑢
1
0

= 𝛤𝛤(𝛼𝛼+𝛽𝛽)
𝛤𝛤(𝛼𝛼)𝛤𝛤(𝛽𝛽) 𝑥𝑥

𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1 = 1
𝐵𝐵(𝑎𝑎,𝛽𝛽)𝑥𝑥

𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1.    (4) 

 
In Equation 4, the normalizer is a normalization factor, which exists to make the integral of 

probability 1. In TS, each arm is set with independent Beta distribution, and each arm is sampled 
once, and then the arm with the largest number is selected. After each recommended arm is selected, 
prior knowledge of the probability of each arm producing a reward is used to set the parameters of 
each beta distribution. The beta distribution with the new parameters is a more accurate estimate of 
the return of the selected arm after incorporating this experience. At time 𝑡𝑡, the expectation of reward 
for behavior 𝑎𝑎 is sampled, and the sampling is based on the Beta distribution Beta (𝛼𝛼𝑘𝑘 + 1,  𝛽𝛽𝑘𝑘 +
1), where 𝛼𝛼𝑘𝑘 and 𝛽𝛽𝑘𝑘 correspond to the 𝑘𝑘𝑡𝑡ℎ arm from the start to the time point 𝑡𝑡. Rewards the 
number of 1s and 0s, the purpose of the action ‘+1’ is to prevent the denominator from being 0 during 
the calculation. If we know that the conversion rate of an item is 0.25 and the variance is about 
0.00186 before the test, then we can get the prior 𝛼𝛼=25, 𝛽𝛽=75, and then add 1 to 𝛼𝛼 every time the 
reward is 1, otherwise 𝛽𝛽 plus 1. 
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Algorithm 1 BernTS (𝐾𝐾,𝛼𝛼,𝛽𝛽)  
1 for 𝑡𝑡 = 1,2, …  do   
2 

 

for 𝑘𝑘 = 1, … ,𝐾𝐾  do    
3  Sample 𝜃𝜃�𝑘𝑘~𝑏𝑏𝑒𝑒𝑡𝑡𝑡𝑡(𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘)   
4 end for   

5 𝑘𝑘∗ ← arg𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘 𝜃𝜃�𝑘𝑘                                     ⊳ 
Recommend action 

6 Apply action 𝑠𝑠𝑘𝑘∗  and observe 𝑟𝑟𝑤𝑤𝑘𝑘∗   
7  Update 𝛼𝛼𝑘𝑘∗ ,𝛽𝛽𝑘𝑘∗: (𝛼𝛼𝑘𝑘∗ ,𝛽𝛽𝑘𝑘∗) ← (𝛼𝛼𝑘𝑘 + 𝑟𝑟𝑟𝑟𝑡𝑡,𝛽𝛽𝑘𝑘 + 1 − 𝑟𝑟𝑟𝑟𝑡𝑡)   
8 end for     

TS algorithm is outlined as Algorithm 1. 𝑏𝑏𝑒𝑒𝑡𝑡𝑡𝑡(𝛼𝛼𝑘𝑘,𝛽𝛽𝑘𝑘)  represents a beta distribution with 
parameters 𝛼𝛼  and 𝛽𝛽 . The algorithm takes input of the number of resources 𝐾𝐾  and the initial 
parameters of the beta distribution of each resource. At each discrete time step 𝑡𝑡, the posterior reward 
for each resource is sampled and the resource with the highest reward is selected (Lines 2-5). The 
player takes the recommended action, gets the corresponding reward, and uses the reward to update 
the distribution parameters for the selected action (Lines 6-7). A Bernoulli bandit generates either a 
zero or a positive unit reward, i.e., 

 

𝑟𝑟𝑤𝑤𝑘𝑘 = �0,𝑍𝑍 = 𝜙𝜙
1, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,                                      (5) 
 

TS captures changes in confidence in the estimate of the mean as the data accumulates. However, 
the disadvantage of classic TS is that it is only suit to be used for the Bernoulli bandit. Some improved 
TS algorithms [23] have been proposed in recent years, which expand the scope of applications not 
only limited to Bernoulli bandit, and the application of improved algorithms will also be introduced 
in Chapter 3.2. 

4. Applications of TS 
4.1 Advertising 

As the sale of advertising space in digital media through real-time ad auctions has become popular 
over the past decade, multiple auction platform that allow advertisers to bid for advertising space in 
the auction, also called Supply-Side Platform (SSP), came into being. For an SSP in the advertising 
world, there are many bidders in the top bid auction that are other SSPs. Grégoire Jauvion et al wrote 
the optimization of the revenue of an SSP as a contextual bandit problem [24]. Contextual information 
for each bid contains available information about ad slot opportunities, such as internet user attributes 
or ad placement, and the closing price of the SSPs internal auction. There is now a need to develop a 
sequential strategy for bidding to deliver as many ads as possible for as little as possible to web 
publishers who want to sell ad space. To solve this contextual slot machine problem, a TS algorithm 
combined with a Bayesian algorithm and a particle filter is used. In each context 𝑐𝑐, the highest bid 
𝑋𝑋𝑖𝑖  among other SSPs in the header auction is modelled as a distribution 𝛷𝛷𝑐𝑐 , and the posterior 
distribution of the discrete approximation is sequentially updated by a Bayesian method using particle 
filtering with a lognormal distribution. 

Assume that 𝑆𝑆 SSPs: 𝑆𝑆1, . . . , 𝑆𝑆𝑠𝑠 compete in the header bidding auctions. Note 𝐷𝐷𝑡𝑡 the sequence of 
impressions happening before time 𝑡𝑡  (including 𝑡𝑡 ), 𝐷𝐷𝑡𝑡,𝑐𝑐  the subsequence of 𝐷𝐷𝑡𝑡  containing all 
impressions 𝑘𝑘 such that 𝑐𝑐𝑘𝑘  =  𝑐𝑐. The revenue function 𝑅𝑅𝑘𝑘 (. ) of 𝑆𝑆1 at impression 𝑘𝑘 can be written 
as 𝑅𝑅𝑘𝑘(𝑞𝑞)  =  1𝑞𝑞≥𝑥𝑥𝑘𝑘  (𝑝𝑝𝑘𝑘 −  𝑞𝑞), where 𝑝𝑝𝑘𝑘 is the amount paid by the advertiser winning the internal 
auction. Suppose 𝑓𝑓𝜃𝜃  is a family of distributions parametrized with 𝜃𝜃 , 𝐹𝐹𝜃𝜃  is the corresponding 
cumulative density functions. 𝛷𝛷𝑐𝑐 belongs to the family 𝑓𝑓𝜃𝜃, so we note 𝜃𝜃𝑐𝑐 be such that 𝛷𝛷𝑐𝑐 = 𝑓𝑓𝜃𝜃𝑐𝑐. 
After fixing a prior distribution 𝜋𝜋𝑐𝑐,0(𝜃𝜃) over 𝜃𝜃𝑐𝑐 , the posterior distribution 𝜋𝜋𝑐𝑐,𝑡𝑡 (𝜃𝜃) is considered to 
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give all the observations available at the end of the 𝑡𝑡-th auction for all 𝑡𝑡. From the Bayes rule, 
𝜋𝜋𝑐𝑐,𝑡𝑡 (𝜃𝜃) is defined as: 

 
𝜋𝜋𝑐𝑐,𝑡𝑡(𝜃𝜃) ∝ 𝜋𝜋𝐶𝐶,0(𝜃𝜃)� �𝐹𝐹𝜃𝜃(𝑞𝑞𝑘𝑘)1𝑥𝑥𝑘𝑘≤𝑞𝑞𝑘𝑘 + �1 − 𝐹𝐹𝜃𝜃(𝑞𝑞𝑘𝑘)�1𝑥𝑥𝑘𝑘>𝑞𝑞𝑘𝑘�

𝑘𝑘∈𝐷𝐷𝑡𝑡,𝑐𝑐
.             (6) 

 
A value 𝜃𝜃  in context 𝑐𝑐  is sampled from the posterior distribution 𝜋𝜋𝑐𝑐𝑘𝑘,𝑡𝑡𝑘𝑘−1  in the 𝑘𝑘 -th 

experiment. Then calculate the bid 𝑞𝑞𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 that maximizes the SSP’s revenue expectation 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞

(𝑝𝑝𝑘𝑘 − 𝑞𝑞)𝐹𝐹𝜃𝜃(𝑞𝑞)                                    (7) 
 

If 𝑥𝑥𝑘𝑘~𝑓𝑓𝜃𝜃. Finally observe the auction results 1𝑞𝑞𝑘𝑘≥𝑥𝑥𝑘𝑘  and update the posterior probability 𝜋𝜋𝑐𝑐𝑘𝑘,𝑡𝑡𝑘𝑘. 
Using context information and TS and adding particle learning can effectively improve the 

efficiency and accuracy of the optimal solution selection strategy. Stochastic modelling relies on the 
highest bid 𝑥𝑥𝑘𝑘  among other SSPs, and only then introduces a payoff function that takes full 
advantage of contextual information and is undisturbed. Using particle filter can better maintain more 
stable performance in data drift compared to UCB or non-stationary bandit algorithm. Even the 
computational cost and additional parameters added by the introduction of particle filters do not affect 
their efficiency and selection accuracy too much. If not only consider the independent context but 
represent the context as a continuous variable, maybe this algorithm can be further improved. 

Two different state-of-the-art strategies in the field are used as baseline strategies: UCB [25] and 
EXP3 [26] to compare TS strategies. For all three strategies, the average reward 

 
1
𝑛𝑛
� 𝑅𝑅𝑘𝑘  (𝑞𝑞) 𝑛𝑛

𝑘𝑘=1 = 1
𝑛𝑛
� 1𝑞𝑞𝑘𝑘≥𝑥𝑥𝑘𝑘  (𝑝𝑝𝑘𝑘 − 𝑞𝑞𝑘𝑘)

𝑛𝑛

𝑘𝑘=1
                     (8) 

 
Is used to measure the performances of the strategies after 𝑛𝑛 auctions. 

  
Figure 1. Evolution of the average rewards of TS, UCB, and Exp3 for dataset 𝑃𝑃1 and 𝑃𝑃2 

(stationary environment) [24]. 
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Figure 2. Evolution of the average rewards of TS, UCB, and Exp3 for dataset 𝑃𝑃1 and 𝑃𝑃2 (non-

stationary environment) [24]. 

Fig.1 depicts the average reward as a function of 𝑛𝑛  on datasets 𝑃𝑃1  and 𝑃𝑃2  in a stationary 
environment (i. e. on the shuffled dataset), and Fig.2 depicts a non-stationary environment (i. e. on 
the ordered dataset). Results on the same dataset are plotted separately. The average rereward of the 
TS strategy is significantly higher than that of the baseline strategies EXP3 and UCB in both 
environments, and the convergence rate is expressed as the minimum number of auctions required 
for the overall average return of the strategy on the entire dataset. The convergence rate of the TS 
strategy is faster than that of EXP3 and the UCB strategy, which means that using the TS strategy has 
a greater possibility of using a smaller number of auctions, which improves the efficiency of reward. 

On the dataset 𝑃𝑃1, the average reward with TS strategy is 2.0888 for the stationary case and 2.0937 
for the non-stationary case. The corresponding success rates (i. e. the share of auctions won 

𝑛𝑛−1� 1𝑞𝑞𝑘𝑘≥𝑥𝑥𝑘𝑘
𝑛𝑛

𝑖𝑖=1
) are 32.19% and 32.09% respectively. 

4.2 Multi-Target Searching and Tracking 
The multi-target robot search task mainly refers to a plane area that has no prior knowledge of the 

target distribution before the search. The robot wants to find some targets as quickly as possible 
through continuous attempts, and finally determine the distribution of all targets. The process of this 
agent constantly trying and getting rewards for learning fits well with the MAB problem. To make 
the multi-robot system better cope with the monitoring task of uneven target distribution in the 
designated area, Chen et al combined Bernoulli TS and Lloyd's algorithm in the distributed control 
strategy [27]. Robots participating in the search need to choose places that are considered to be easier 
to obtain rewards to try, and also choose to try (explore) some less-understood areas considering 
whether the unknown areas have a greater chance of obtaining rewards. In target searching, the 
rewards are targets and no targets. If through sampling, this area brings rewards, it proves that the 
target is likely to be densely distributed in this area but cannot be determined. As the time of sampling 
increases, the value of 𝛼𝛼 increases, and the target distribution density in some areas is constantly 
believed to be relatively high, that is, it is very likely to find the target and obtain rewards if robots 
search there. But robots also need to sample areas with low density, because although the reward may 
not be obtained, in order to prevent the possibility of these areas bringing a higher cumulative reward 
in the long-term. 
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Algorithm 2 Distributed Search  
1 for   𝑟𝑟𝑖𝑖 ∈ 𝑅𝑅  do                    ⊳ Initialize robots 
2 𝑔𝑔𝑖𝑖 = 𝑞𝑞𝑖𝑖                                                        

3 
 

for 
𝑘𝑘 ∈ {1, … ,𝐾𝐾}   do         ⊳  Initialize beta 
functions 

4  𝛼𝛼𝑘𝑘 ← 1,  𝛽𝛽𝑘𝑘 ← 1   
5 end for   
6 end for   
7 for   𝑡𝑡 = 1,2, … do   
8  Receive measurement set 𝑍𝑍𝑖𝑖   
9  Find nearest action index 𝑘𝑘� = arg min ‖𝑞𝑞𝑖𝑖 − 𝑠𝑠𝑘𝑘‖ 
10  Compute 𝑟𝑟𝑤𝑤𝑘𝑘  
11  Update 𝛼𝛼𝑘𝑘∗ ,𝛽𝛽𝑘𝑘∗  
12  Broadcast  �𝑖𝑖, 𝑡𝑡,𝑘𝑘∗, 𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖�  

13  if  𝑞𝑞𝑖𝑖 = 𝑔𝑔𝑖𝑖 
then                    

⊳ Reached goal 

14  if  𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖 = 0 then                               
15  Select 𝑘𝑘𝑖𝑖∗using Algorithm 1 
16  Set goal 𝑔𝑔𝑖𝑖 = 𝑠𝑠𝑘𝑘𝑖𝑖∗ 
17  end if   
18  end if   
19 end for    

An active search strategy of the Bernoulli-TS method is mainly used in robots that are not in the 
group of robots that are actively tracking the target. The entire environment to be developed is evenly 
divided into 𝐾𝐾  regular polygon areas, and the centre of each regular polygon corresponds to a 
sampling position 𝑠𝑠𝑘𝑘, which can be regarded as an arm, then the set of actions is 𝑆𝑆 = {𝑠𝑠1, … , 𝑠𝑠𝑘𝑘}. 
After the robot selects an action and has a delay in reaching the target, it gets a reward 𝑟𝑟𝑤𝑤𝑘𝑘 (as 
formula (5)) for that position (in the Bernoulli model reward mechanism) after the exploration task is 
transformed into a MAB problem, the TS variable of the dynamic reward probability is subjected to 
beta distribution Update so that the robot can also react to future reward probability changes and 
continue to optimize exploration in the presence of moving targets in a specific area, and set the robots 
to broadcast (𝑖𝑖, 𝑡𝑡, 𝑘𝑘∗, 𝑟𝑟𝑟𝑟) tuples to each other through the communication graph, updating the local 
𝛼𝛼 and 𝛽𝛽 copies, Eventually, a shared 𝛼𝛼 and 𝛽𝛽 are achieved. Without prior knowledge, the newly 
developed distributed control algorithm speeds up the target search, especially when many targets are 
concentrated in some fixed regions in the environment that are not uniform, that is, the roughness 
provided by 𝛼𝛼 and 𝛽𝛽. The global information optimizes task assignment by comparing the number 
of objects among different small blocks, so that the robot can efficiently search and track multiple 
moving objects. Related work is also found in [28] [29]. 
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(a) Lloyds 40s    (b) Lloyds 60s   (c) Lloyds+TS 40s  (d) Lloyds+TS 60s   (e) Values 
Figure 3. Figures show comparison of applying pure Lloyd’s algorithm and a combined Lloyd’s 

algorithm with Thompson sampling after 100s. In Fig 3(a)-(d), green squares and circles show robot 
locations and sensor footprints, respectively. Orange diamonds show the locations of targets. Fig 

3(e) maps values in Fig 3(d) by darkness, with a darker colour indicates a higher value [27]. 
The author compares the new method incorporating the TS algorithm with the previous method 

[30] through a single experiment of multi-target searching. There are 40 robots searching for 40 
objects in environment 𝐸𝐸, which is assumed as a 100m × 100m square. The 40 stationary targets 
randomly drawn in the two defined 33m × 33m sub-areas with 30 targets in the lower-left sub-
environment and 10 targets in the upper-right sub-environment respectively. 

Figure 3 compares the positions of the robots and the targets at different time points during 
exploration using the two algorithms. Significantly different from the distribution of robots using 
only Lloyd’s algorithm at various time points in Figure 3(a)-(b), the robot team using the distributed 
TS strategy rapidly learns the target distribution and the clustering of regions that may contain targets. 
After that, as shown in Fig. 3(c)-(d), at 40 seconds, a large number of robots have gathered on the 
large cluster of the target, and the remaining few are exploring, and at 60 seconds, most robots have 
found the target, And the distribution of the number of robots closely matches that of targets (lower-
left: upper-right is 28:9), when 3 robots continue to monitor in other unlikely regions, indicating that 
individuals are more likely to be assigned to areas that require more individuals to allow team to 
search and track targets faster. Fig. 3(e) reflects the value of 𝛼𝛼 for each sampling candidates after 60 
seconds, implying that the team received more reward in regions with higher target concentrations. 

4.3 Fog Computing 
Multi-interface channel allocation decision problem of fog computing has been discussed by Junge 

Zhu et al in 2021 with the idea of multi-play multi-armed bandit and use TS to learn binary 
transmission feedback, aiming at actively make online channel allocation decisions, reduce 
performance loss, and finally develop a multi-interface channel allocation with binary feedback 
(MICA-B), which is successfully validated as an effective fog computing integrated design [31]. Each 
fog node is regarded as an agent. In the total time slot T, each fog node maintains a fixed set 𝐶𝐶 
consisting of 𝑁𝑁 independent channels. The available channel set 𝐶𝐶 = {1,⋯ ,𝑁𝑁} is regarded as an 
arm set. And according to the working mechanism that 𝑀𝑀 channels is allocated to the interfaces at 
each time slot 𝑡𝑡, each subset with 𝑀𝑀 channels is denoted as an arm 𝐾𝐾𝑡𝑡. At the end of each time slot, 
the unknown distribution binary transmission feedback message {𝑋𝑋𝑘𝑘(𝑡𝑡)}𝑘𝑘∈𝐾𝐾𝑡𝑡 is received by the fog 
nodes as a reward. The goal to be maximized in the fog computing channel allocation scheme is the 
total expected throughput 

 
max
�𝐾𝐾𝑡𝑡

𝜋𝜋�𝑡𝑡
𝐸𝐸�𝛴𝛴𝑡𝑡=1𝑇𝑇 ∑ 𝑟𝑟𝑘𝑘𝑋𝑋𝑘𝑘(𝑡𝑡)𝑘𝑘∈𝐾𝐾𝑡𝑡

𝜋𝜋 �                                 (9) 
 
generated by successful transmission. Because the success probability of all channels is difficult 

to be used as prior information in practice, TS is introduced to combine the decision process and the 
combination of online learning, dealing with exploration and development problems, reduces the 
possible performance loss under uncertainty. An initial 𝛼𝛼  and 𝛽𝛽  are derived from empirical 
information 
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Figure 4. Comparison of MICA-B and the baselines under the high-variance setting in the binary-

feedback scenario. (a) Cumulative regret. (b) Time-averaged regret. (c) Time-averaged throughput. 
(d) Variance [30]. 

 
Figure 5. Comparison of regret under the medium-variance and low-variance settings in the binary-

feedback scenario. (a) Medium-variance. (b) Low-variance [31]. 
such as transmission logs, the transmission success probability of each channel is estimated with 

a normal distribution, and the subset of channels with the largest total estimated value is selected. 
Then, the parameters of this distribution are continuously updated according to the feedback signal 
𝑥𝑥𝑘𝑘. Another advantage of this approach is that if the transfer rate is uniform, the total regret over time 
is guaranteed to be within an upper bound. 

Three commonly adopted strategies in the field are used as baseline strategies: CUCB [32], MP-
KL-UCB [33] and Bayes-UCB [34] to compare the MICA-B strategy. The regret defined in this case 
is the gap between the expected and optimal cumulative throughput produced by the policy 

 
𝑅𝑅𝜋𝜋(𝑇𝑇) ≜ ∑ ∑ 𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑗𝑗=𝑘𝑘∗

𝑇𝑇
𝑡𝑡=1 − 𝐸𝐸�𝛴𝛴𝑡𝑡=1𝑇𝑇 ∑ 𝑟𝑟𝑘𝑘𝑋𝑋𝑘𝑘(𝑡𝑡)𝑘𝑘∈𝐾𝐾𝑡𝑡

𝜋𝜋 �,                 (10) 
 
Where less regret means higher throughput. 
Fig. 4 compares the variance of cumulative regret, time-averaged regret, time-averaged throughput, 

and cumulative regret in the high-variance setting in the binary feedback context. From Fig. 4(a)-(c) 
and Fig. 5(a)-(b), in the same scenario with high, medium and low variance, MICA-B improves the 
learning efficiency due to the use of prior information, with lower regret and higher throughput, 
respectively. It can be seen from Fig. 3(d) that the variance of accumulated regret for MICA-B is also 
the smallest, which means that this strategy contributes to more stable wireless transmission. 

4.4 Discussions 
The multi-armed bandit problem has found its own application scenarios in current industrial 

applications, especially in online recommendation systems, where data is easy to obtain, and 
automation is the only way to expand, such as in real-time online recommendation systems, search 
sorting, etc. The system is widely used. Usually, the agent wants to do exploration, know which 
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choice has the best behavior, and wants to maximize the cumulative reward in the shortest time, so 
TS is the solution based on this. In the UCB algorithm that improves the inefficient random 
exploration of 𝜀𝜀-greedy, UCB explicitly appears in the item of regret, including the value of UCB 
that the algorithm needs to use directly. In the TS algorithm, the algorithm does not need to use the 
values of UCB and LCB directly, but artificially introducing UCB and LCB as the Bayesian regret in 
the analysis will make the analysis more effective. The application prospects of TS are actually very, 
very broad, ranging from choosing a route to go to work, to making a fortune in a casino stud. At 
present, the more popular research applications are the task assignment and target search problems in 
machine learning, and the cold start problem in recommender systems, aiming to study and improve 
the accuracy of pushing advertisements to users. 

However, TS also has some shortcomings. First, when the posterior distribution is very complex, 
the convergence speed of TS will be very slow. Second, when the sampled items have close click-
through rates, these items are computed and sampled all the time, which can be time-consuming, and 
third, in most practical applications, the posterior distribution is maintained and sampled on the model 
is computationally tedious. For the first point, maybe try a more advanced sampling method 
Importance Sampling [35] or MCMC [36]. For the third point, TS is often used in conjunction with 
approximate sampling techniques. In view of the limitations of the classic TS algorithm, how to 
further expand the distribution range of the bandit machine application is not only applicable to the 
Bernoulli bandit machine, but also to the vast majority of probability distributions is also an important 
aspect in the future. If it can be universal to more distributions, efficient TS can also have wider 
application prospects, not only in recommender systems, using TS or as a prerequisite for building 
certain learning types. The machine learning optimization of the conclusion can also achieve and 
continue to improve speed. 

5. Conclusions 
This paper formalizes the multi-armed bandit problem and defines metrics to measure the quality 

of the algorithm: reward and regret. Any question about choice can be transformed into a multi-armed 
bandit problem. Their purpose is to maximize the profit, and the best way is to try it strategically as 
soon as possible. These strategies are the MAB algorithm. This paper mainly focuses on three 
commonly used algorithms: Epsilon-Greedy algorithm, Upper Confidence Bound algorithm and TS 
algorithm. The Epsilon-Greedy algorithm is characterized by defaulting to the currently known 
handle with the highest return, and occasionally selecting those that do not have the highest return. 
Not caring how many times each handle has been pulled means that these algorithms will no longer 
select handles with particularly low initial returns. The UCB algorithm not only pays attention to the 
return, but also pays attention to the number of times each handle is explored. UCB adopts a 
deterministic selection strategy and uses a probability distribution (only the upper bound of the 
confidence interval) to quantify uncertainty, which may result in the same return each time, while TS 
is a randomization strategy. UCB is more computationally intensive, and TS is relatively simpler to 
implement. Combining the advantages of the above algorithms, the most popular in recent years is 
the TS algorithm. 

At present, TS is the most computationally efficient and most accurate algorithm is mainly used 
for initial information, such as the cold start problem where the prior distribution information of the 
target distribution is missing. In the future, for the optimization of the algorithm, regardless of the 
substantial increase in computing power, the feasible direction is still to expand the types of slot 
machines with different distributions that the TS algorithm can be applied to and use in combination 
with other algorithms to improve computing efficiency and increase the number of simultaneous 
processing. the number of candidate arms without significantly increasing the computational cost. 
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